RAG
RAG (Retrieval-Augmented Generation) components process a user query by retrieving relevant documents and generating a concise summary that addresses the user's question.
Vectara RAG​
This component leverages Vectara's Retrieval Augmented Generation (RAG) capabilities to search and summarize documents based on the provided input. For more information, see the Vectara documentation.
Parameters​
Inputs​
Name | Type | Description |
---|---|---|
vectara_customer_id | String | Vectara customer ID |
vectara_corpus_id | String | Vectara corpus ID |
vectara_api_key | SecretString | Vectara API key |
search_query | String | The query to receive an answer on |
lexical_interpolation | Float | Hybrid search factor (0.005 to 0.1) |
filter | String | Metadata filters to narrow the search |
reranker | String | Reranker type (mmr, rerank_multilingual_v1, none) |
reranker_k | Integer | Number of results to rerank (1 to 100) |
diversity_bias | Float | Diversity bias for MMR reranker (0 to 1) |
max_results | Integer | Maximum number of search results to summarize (1 to 100) |
response_lang | String | Language code for the response (e.g., "eng", "auto") |
prompt | String | Prompt name for summarization |
Outputs​
Name | Type | Description |
---|---|---|
answer | Message | Generated RAG response |