Skip to main content

RAG

RAG (Retrieval-Augmented Generation) components process a user query by retrieving relevant documents and generating a concise summary that addresses the user's question.

Vectara RAG​

This component leverages Vectara's Retrieval Augmented Generation (RAG) capabilities to search and summarize documents based on the provided input. For more information, see the Vectara documentation.

Parameters​

Inputs​

NameTypeDescription
vectara_customer_idStringVectara customer ID
vectara_corpus_idStringVectara corpus ID
vectara_api_keySecretStringVectara API key
search_queryStringThe query to receive an answer on
lexical_interpolationFloatHybrid search factor (0.005 to 0.1)
filterStringMetadata filters to narrow the search
rerankerStringReranker type (mmr, rerank_multilingual_v1, none)
reranker_kIntegerNumber of results to rerank (1 to 100)
diversity_biasFloatDiversity bias for MMR reranker (0 to 1)
max_resultsIntegerMaximum number of search results to summarize (1 to 100)
response_langStringLanguage code for the response (e.g., "eng", "auto")
promptStringPrompt name for summarization

Outputs​

NameTypeDescription
answerMessageGenerated RAG response

Hi, how can I help you?