Skip to main content

Helper components in Langflow

Helper components provide utility functions to help manage data, tasks, and other components in your flow.

Use a helper component in a flow​

Chat memory in Langflow is stored either in local Langflow tables with LCBufferMemory, or connected to an external database.

The Store Message helper component stores chat memories as Data objects, and the Message History helper component retrieves chat messages as data objects or strings.

This example flow stores and retrieves chat history from an AstraDBChatMemory component with Store Message and Chat Memory components.

Sample Flow storing Chat Memory in AstraDB

Create List​

This component dynamically creates a record with a specified number of fields.

Inputs​

NameDisplay NameInfo
n_fieldsNumber of FieldsNumber of fields to be added to the record.
text_keyText KeyKey used as text.

Current date​

The Current Date component returns the current date and time in a selected timezone. This component provides a flexible way to obtain timezone-specific date and time information within a Langflow pipeline.

Inputs​

NameDisplay NameInfo
timezoneTimezoneSelect the timezone for the current date and time.

Outputs​

NameDisplay NameInfo
current_dateCurrent DateThe resulting current date and time in the selected timezone.

ID Generator​

This component generates a unique ID.

Outputs​

NameDisplay NameInfo
valueValueUnique ID generated.

Message history​

info

Prior to Langflow 1.1, this component was known as the Chat Memory component.

This component retrieves and manages chat messages from Langflow tables or an external memory.

Inputs​

NameDisplay NameInfo
memoryExternal MemoryRetrieve messages from an external memory. If empty, it will use the Langflow tables.
senderSender TypeFilter by sender type.
sender_nameSender NameFilter by sender name.
n_messagesNumber of MessagesNumber of messages to retrieve.
session_idSession IDThe session ID of the chat. If empty, the current session ID parameter will be used.
orderOrderOrder of the messages.
templateTemplateThe template to use for formatting the data. It can contain the keys {text}, {sender} or any other key in the message data.

Outputs​

NameDisplay NameInfo
messagesMessages (Data)Retrieved messages as Data objects.
messages_textMessages (Text)Retrieved messages formatted as text.
lc_memoryMemoryA constructed Langchain ConversationBufferMemory object

Store Message​

This component stores chat messages or text into Langflow tables or an external memory.

It provides flexibility in managing message storage and retrieval within a chat system.

Inputs​

NameDisplay NameInfo
messageMessageThe chat message to be stored. (Required)
memoryExternal MemoryThe external memory to store the message. If empty, it will use the Langflow tables.
senderSenderThe sender of the message. Can be Machine or User. If empty, the current sender parameter will be used.
sender_nameSender NameThe name of the sender. Can be AI or User. If empty, the current sender parameter will be used.
session_idSession IDThe session ID of the chat. If empty, the current session ID parameter will be used.

Outputs​

NameDisplay NameInfo
stored_messagesStored MessagesThe list of stored messages after the current message has been added.

Structured output​

This component transforms LLM responses into structured data formats.

Input​

NameDisplay NameInfo
llmLanguage ModelThe language model to use to generate the structured output.
input_valueInput messageThe input message for the language model to process.
schema_nameSchema NameProvide a name for the output data schema.
output_schemaOutput SchemaDefine the structure and data types for the model's output.
multipleGenerate MultipleSet to True if the model should generate a list of outputs instead of a single output.

Output​

| structured_output | Structured Output | The resulting structured output based on the defined schema. |

Hi, how can I help you?