Skip to main content

Bundles

Bundled components are based on standard Langflow functionality, so you add them to your flows and configure them in much the same way as the standard components. This documentation summarizes each bundled component and its parameters. For details about provider-specific aspects of bundled components, this documentation provides links to relevant component provider documentation.

Agent bundles

Agents use LLMs as a brain to analyze problems and select external tools.

For more information, see Agents.

CrewAI bundles

This bundle represents Agents of CrewAI allowing for the creation of specialized AI agents with defined roles goals and capabilities within a crew.

For more information, see the CrewAI agents documentation.

Parameters

Inputs

NameDisplay NameInfo
roleRoleThe role of the agent.
goalGoalThe objective of the agent.
backstoryBackstoryThe backstory of the agent.
toolsToolsThe tools at the agent's disposal.
llmLanguage ModelThe language model that runs the agent.
memoryMemoryThis determines whether the agent should have memory or not.
verboseVerboseThis enables verbose output.
allow_delegationAllow DelegationThis determines whether the agent is allowed to delegate tasks to other agents.
allow_code_executionAllow Code ExecutionThis determines whether the agent is allowed to execute code.
kwargskwargsAdditional keyword arguments for the agent.

Outputs

NameDisplay NameInfo
outputAgentThe constructed CrewAI Agent object.

Hierarchical Crew

This component represents a group of agents managing how they should collaborate and the tasks they should perform in a hierarchical structure. This component allows for the creation of a crew with a manager overseeing the task execution.

For more information, see the CrewAI hierarchical crew ocumentation.

Parameters

Inputs

NameDisplay NameInfo
agentsAgentsThe list of Agent objects representing the crew members.
tasksTasksThe list of HierarchicalTask objects representing the tasks to be executed.
manager_llmManager LLMThe language model for the manager agent.
manager_agentManager AgentThe specific agent to act as the manager.
verboseVerboseThis enables verbose output for detailed logging.
memoryMemoryThe memory configuration for the crew.
use_cacheUse CacheThis enables caching of results.
max_rpmMax RPMThis sets the maximum requests per minute.
share_crewShare CrewThis determines if the crew information is shared among agents.
function_calling_llmFunction Calling LLMThe language model for function calling.

Outputs

NameDisplay NameInfo
crewCrewThe constructed Crew object with hierarchical task execution.

Sequential crew

This component represents a group of agents with tasks that are executed sequentially. This component allows for the creation of a crew that performs tasks in a specific order.

For more information, see the CrewAI sequential crew documentation.

Parameters

Inputs

NameDisplay NameInfo
tasksTasksThe list of SequentialTask objects representing the tasks to be executed.
verboseVerboseThis enables verbose output for detailed logging.
memoryMemoryThe memory configuration for the crew.
use_cacheUse CacheThis enables caching of results.
max_rpmMax RPMThis sets the maximum requests per minute.
share_crewShare CrewThis determines if the crew information is shared among agents.
function_calling_llmFunction Calling LLMThe language model for function calling.

Outputs

NameDisplay NameInfo
crewCrewThe constructed Crew object with sequential task execution.

Sequential task agent

This component creates a CrewAI Task and its associated Agent allowing for the definition of sequential tasks with specific agent roles and capabilities.

For more information, see the CrewAI sequential agents documentation.

Parameters

Inputs

NameDisplay NameInfo
roleRoleThe role of the agent.
goalGoalThe objective of the agent.
backstoryBackstoryThe backstory of the agent.
toolsToolsThe tools at the agent's disposal.
llmLanguage ModelThe language model that runs the agent.
memoryMemoryThis determines whether the agent should have memory or not.
verboseVerboseThis enables verbose output.
allow_delegationAllow DelegationThis determines whether the agent is allowed to delegate tasks to other agents.
allow_code_executionAllow Code ExecutionThis determines whether the agent is allowed to execute code.
agent_kwargsAgent kwargsThe additional kwargs for the agent.
task_descriptionTask DescriptionThe descriptive text detailing the task's purpose and execution.
expected_outputExpected Task OutputThe clear definition of the expected task outcome.
async_executionAsync ExecutionThe boolean flag indicating asynchronous task execution.
previous_taskPrevious TaskThe previous task in the sequence for chaining.

Outputs

NameDisplay NameInfo
task_outputSequential TaskThe list of SequentialTask objects representing the created tasks.

CSV Agent

This component creates a CSV agent from a CSV file and LLM.

For more information, see the Langchain CSV agent documentation.

Parameters

Inputs

NameTypeDescription
llmLanguageModelThe language model to use for the agent.
pathFileThe path to the CSV file.
agent_typeStringThe type of agent to create.

Outputs

NameTypeDescription
agentAgentExecutorThe CSV agent instance.

OpenAI Tools Agent

This component creates an OpenAI Tools Agent.

For more information, see the Langchain OpenAI agent documentation.

Parameters

Inputs

NameTypeDescription
llmLanguageModelThe language model to use.
toolsList of ToolsThe tools to give the agent access to.
system_promptStringThe system prompt to provide context to the agent.
input_valueStringThe user's input to the agent.
memoryMemoryThe memory for the agent to use for context persistence.
max_iterationsIntegerThe maximum number of iterations to allow the agent to execute.
verboseBooleanThis determines whether to print out the agent's intermediate steps.
handle_parsing_errorsBooleanThis determines whether to handle parsing errors in the agent.

Outputs

NameTypeDescription
agentAgentExecutorThe OpenAI Tools agent instance.
outputStringThe output from executing the agent on the input.

OpenAPI Agent

This component creates an agent for interacting with OpenAPI services.

For more information, see the Langchain OpenAPI toolkit documentation.

Parameters

Inputs

NameTypeDescription
llmLanguageModelThe language model to use.
openapi_specStringThe OpenAPI specification for the service.
base_urlStringThe base URL for the API.
headersDictThe optional headers for API requests.
agent_executor_kwargsDictThe optional parameters for the agent executor.

Outputs

NameTypeDescription
agentAgentExecutorThe OpenAPI agent instance.

SQL Agent

This component creates an agent for interacting with SQL databases.

For more information, see the Langchain SQL agent documentation.

Parameters

Inputs

NameTypeDescription
llmLanguageModelThe language model to use.
databaseDatabaseThe SQL database connection.
top_kIntegerThe number of results to return from a SELECT query.
use_toolsBooleanThis determines whether to use tools for query execution.
return_intermediate_stepsBooleanThis determines whether to return the agent's intermediate steps.
max_iterationsIntegerThe maximum number of iterations to run the agent.
max_execution_timeIntegerThe maximum execution time in seconds.
early_stopping_methodStringThe method to use for early stopping.
verboseBooleanThis determines whether to print the agent's thoughts.

Outputs

NameTypeDescription
agentAgentExecutorThe SQL agent instance.

Tool Calling Agent

This component creates an agent for structured tool calling with various language models.

For more information, see the Langchain tool calling documentation.

Parameters

Inputs

NameTypeDescription
llmLanguageModelThe language model to use.
toolsList[Tool]The list of tools available to the agent.
system_messageStringThe system message to use for the agent.
return_intermediate_stepsBooleanThis determines whether to return the agent's intermediate steps.
max_iterationsIntegerThe maximum number of iterations to run the agent.
max_execution_timeIntegerThe maximum execution time in seconds.
early_stopping_methodStringThe method to use for early stopping.
verboseBooleanThis determines whether to print the agent's thoughts.

Outputs

NameTypeDescription
agentAgentExecutorThe tool calling agent instance.

XML Agent

This component creates an XML Agent using LangChain.

The agent uses XML formatting for tool instructions to the Language Model.

For more information, see the Langchain XML Agent documentation.

Parameters

Inputs

NameTypeDescription
llmLanguageModelThe language model to use for the agent.
user_promptStringThe custom prompt template for the agent with XML formatting instructions.
toolsList[Tool]The list of tools available to the agent.

Outputs

NameTypeDescription
agentAgentExecutorThe XML Agent instance.

Embedding models bundles

Embedding model components in Langflow generate text embeddings using the selected Large Language Model.

For more information, see Embedding models.

For more information on a specific embedding model bundle, see the provider's documentation.

AI/ML

This component generates embeddings using the AI/ML API.

Parameters

Inputs

NameTypeDescription
model_nameStringThe name of the AI/ML embedding model to use.
aiml_api_keySecretStringThe API key required for authenticating with the AI/ML service.

Outputs

NameTypeDescription
embeddingsEmbeddingsAn instance of AIMLEmbeddingsImpl for generating embeddings.

Amazon Bedrock Embeddings

This component is used to load embedding models from Amazon Bedrock.

Parameters

Inputs

NameTypeDescription
credentials_profile_nameStringThe name of the AWS credentials profile in ~/.aws/credentials or ~/.aws/config, which has access keys or role information.
model_idStringThe ID of the model to call, such as amazon.titan-embed-text-v1. This is equivalent to the modelId property in the list-foundation-models API.
endpoint_urlStringThe URL to set a specific service endpoint other than the default AWS endpoint.
region_nameStringThe AWS region to use, such as us-west-2. Falls back to the AWS_DEFAULT_REGION environment variable or region specified in ~/.aws/config if not provided.

Outputs

NameTypeDescription
embeddingsEmbeddingsAn instance for generating embeddings using Amazon Bedrock.

Astra DB vectorize

important

This component is deprecated as of Langflow version 1.1.2. Instead, use the Astra DB vector store component.

Connect this component to the Embeddings port of the Astra DB vector store component to generate embeddings.

This component requires that your Astra DB database has a collection that uses a vectorize embedding provider integration. For more information and instructions, see Embedding Generation.

Parameters

Inputs

NameDisplay NameInfo
providerEmbedding ProviderThe embedding provider to use.
model_nameModel NameThe embedding model to use.
authenticationAuthenticationThe name of the API key in Astra that stores your vectorize embedding provider credentials. (Not required if using an Astra-hosted embedding provider.)
provider_api_keyProvider API KeyAs an alternative to authentication, directly provide your embedding provider credentials.
model_parametersModel ParametersAdditional model parameters.

Outputs

NameTypeDescription
embeddingsEmbeddingsAn instance for generating embeddings using Astra vectorize.

Azure OpenAI Embeddings

This component generates embeddings using Azure OpenAI models.

Parameters

Inputs

NameTypeDescription
ModelStringThe name of the model to use. Default: text-embedding-3-small.
Azure EndpointStringYour Azure endpoint, including the resource, such as https://example-resource.azure.openai.com/.
Deployment NameStringThe name of the deployment.
API VersionStringThe API version to use, with options including various dates.
API KeyStringThe API key required to access the Azure OpenAI service.

Outputs

NameTypeDescription
embeddingsEmbeddingsAn instance for generating embeddings using Azure OpenAI.

Cloudflare Workers AI Embeddings

This component generates embeddings using Cloudflare Workers AI models.

Parameters

Inputs

NameDisplay NameInfo
account_idCloudflare account IDFind your Cloudflare account ID.
api_tokenCloudflare API tokenCreate an API token.
model_nameModel NameList of supported models.
strip_new_linesStrip New LinesWhether to strip new lines from the input text.
batch_sizeBatch SizeThe number of texts to embed in each batch.
api_base_urlCloudflare API base URLThe base URL for the Cloudflare API.
headersHeadersAdditional request headers.

Outputs

NameDisplay NameInfo
embeddingsEmbeddingsAn instance for generating embeddings using Cloudflare Workers.

Cohere Embeddings

This component is used to load embedding models from Cohere.

Parameters

Inputs

NameTypeDescription
cohere_api_keyStringThe API key required to authenticate with the Cohere service.
modelStringThe language model used for embedding text documents and performing queries. Default: embed-english-v2.0.
truncateBooleanWhether to truncate the input text to fit within the model's constraints. Default: False.

Outputs

NameTypeDescription
embeddingsEmbeddingsAn instance for generating embeddings using Cohere.

Embedding similarity

This component computes selected forms of similarity between two embedding vectors.

Parameters

Inputs

NameDisplay NameInfo
embedding_vectorsEmbedding VectorsA list containing exactly two data objects with embedding vectors to compare.
similarity_metricSimilarity MetricSelect the similarity metric to use. Options: "Cosine Similarity", "Euclidean Distance", "Manhattan Distance".

Outputs

NameDisplay NameInfo
similarity_dataSimilarity DataA data object containing the computed similarity score and additional information.

Google generative AI embeddings

This component connects to Google's generative AI embedding service using the GoogleGenerativeAIEmbeddings class from the langchain-google-genai package.

Parameters

Inputs

NameDisplay NameInfo
api_keyAPI KeyThe secret API key for accessing Google's generative AI service. Required.
model_nameModel NameThe name of the embedding model to use. Default: "models/text-embedding-004".

Outputs

NameDisplay NameInfo
embeddingsEmbeddingsThe built GoogleGenerativeAIEmbeddings object.

Hugging Face Embeddings

note

This component is deprecated as of Langflow version 1.0.18. Instead, use the Hugging Face Embeddings Inference component.

This component loads embedding models from HuggingFace.

Use this component to generate embeddings using locally downloaded Hugging Face models. Ensure you have sufficient computational resources to run the models.

Parameters

Inputs

NameDisplay NameInfo
Cache FolderCache FolderThe folder path to cache HuggingFace models.
Encode KwargsEncoding ArgumentsAdditional arguments for the encoding process.
Model KwargsModel ArgumentsAdditional arguments for the model.
Model NameModel NameThe name of the HuggingFace model to use.
Multi ProcessMulti-ProcessWhether to use multiple processes.

Outputs

NameDisplay NameInfo
embeddingsEmbeddingsThe generated embeddings.

Hugging Face embeddings inference

This component generates embeddings using Hugging Face Inference API models and requires a Hugging Face API token to authenticate. Local inference models do not require an API key.

Use this component to create embeddings with Hugging Face's hosted models, or to connect to your own locally hosted models.

Parameters

Inputs

NameDisplay NameInfo
API KeyAPI KeyThe API key for accessing the Hugging Face Inference API.
API URLAPI URLThe URL of the Hugging Face Inference API.
Model NameModel NameThe name of the model to use for embeddings.

Outputs

NameDisplay NameInfo
embeddingsEmbeddingsThe generated embeddings.

Connect the Hugging Face component to a local embeddings model

To run an embeddings inference locally, see the HuggingFace documentation.

To connect the local Hugging Face model to the Hugging Face embeddings inference component and use it in a flow, follow these steps:

  1. Create a Vector store RAG flow. There are two embeddings models in this flow that you can replace with Hugging Face embeddings inference components.
  2. Replace both OpenAI embeddings model components with Hugging Face model components.
  3. Connect both Hugging Face components to the Embeddings ports of the Astra DB vector store components.
  4. In the Hugging Face components, set the Inference Endpoint field to the URL of your local inference model. The API Key field is not required for local inference.
  5. Run the flow. The local inference models generate embeddings for the input text.

IBM watsonx embeddings

This component generates text using IBM watsonx.ai foundation models.

To use IBM watsonx.ai embeddings components, replace an embeddings component with the IBM watsonx.ai component in a flow.

An example document processing flow looks like the following:

IBM watsonx embeddings model loading a chroma-db with split text

This flow loads a PDF file from local storage and splits the text into chunks.

The IBM watsonx embeddings component converts the text chunks into embeddings, which are then stored in a Chroma DB vector store.

The values for API endpoint, Project ID, API key, and Model Name are found in your IBM watsonx.ai deployment. For more information, see the Langchain documentation.

Default models

The component supports several default models with the following vector dimensions:

  • sentence-transformers/all-minilm-l12-v2: 384-dimensional embeddings
  • ibm/slate-125m-english-rtrvr-v2: 768-dimensional embeddings
  • ibm/slate-30m-english-rtrvr-v2: 768-dimensional embeddings
  • intfloat/multilingual-e5-large: 1024-dimensional embeddings

The component automatically fetches and updates the list of available models from your watsonx.ai instance when you provide your API endpoint and credentials.

Parameters

Inputs

NameDisplay NameInfo
urlwatsonx API EndpointThe base URL of the API.
project_idwatsonx project idThe project ID for your watsonx.ai instance.
api_keyAPI KeyThe API Key to use for the model.
model_nameModel NameThe name of the embedding model to use.
truncate_input_tokensTruncate Input TokensThe maximum number of tokens to process. Default: 200.
input_textInclude the original text in the outputDetermines if the original text is included in the output. Default: True.

Outputs

NameDisplay NameInfo
embeddingsEmbeddingsAn instance for generating embeddings using watsonx.ai.

LM Studio Embeddings

This component generates embeddings using LM Studio models.

Parameters

Inputs

NameDisplay NameInfo
modelModelThe LM Studio model to use for generating embeddings.
base_urlLM Studio Base URLThe base URL for the LM Studio API.
api_keyLM Studio API KeyThe API key for authentication with LM Studio.
temperatureModel TemperatureThe temperature setting for the model.

Outputs

NameDisplay NameInfo
embeddingsEmbeddingsThe generated embeddings.

MistralAI

This component generates embeddings using MistralAI models.

Parameters

Inputs

NameTypeDescription
modelStringThe MistralAI model to use. Default: "mistral-embed".
mistral_api_keySecretStringThe API key for authenticating with MistralAI.
max_concurrent_requestsIntegerThe maximum number of concurrent API requests. Default: 64.
max_retriesIntegerThe maximum number of retry attempts for failed requests. Default: 5.
timeoutIntegerThe request timeout in seconds. Default: 120.
endpointStringThe custom API endpoint URL. Default: https://api.mistral.ai/v1/).

Outputs

NameTypeDescription
embeddingsEmbeddingsA MistralAIEmbeddings instance for generating embeddings.

NVIDIA

This component generates embeddings using NVIDIA models.

Parameters

Inputs

NameTypeDescription
modelStringThe NVIDIA model to use for embeddings, such as nvidia/nv-embed-v1.
base_urlStringThe base URL for the NVIDIA API. Default: https://integrate.api.nvidia.com/v1.
nvidia_api_keySecretStringThe API key for authenticating with NVIDIA's service.
temperatureFloatThe model temperature for embedding generation. Default: 0.1.

Outputs

NameTypeDescription
embeddingsEmbeddingsA NVIDIAEmbeddings instance for generating embeddings.

Ollama embeddings

This component generates embeddings using Ollama models.

For a list of Ollama embeddings models, see the Ollama documentation.

To use this component in a flow, connect Langflow to your locally running Ollama server and select an embeddings model.

  1. In the Ollama component, in the Ollama Base URL field, enter the address for your locally running Ollama server. This value is set as the OLLAMA_HOST environment variable in Ollama. The default base URL is http://127.0.0.1:11434.
  2. To refresh the server's list of models, click .
  3. In the Ollama Model field, select an embeddings model. This example uses all-minilm:latest.
  4. Connect the Ollama embeddings component to a flow. For example, this flow connects a local Ollama server running a all-minilm:latest embeddings model to a Chroma DB vector store to generate embeddings for split text.

Ollama embeddings connected to Chroma DB

For more information, see the Ollama documentation.

Parameters

Inputs

NameTypeDescription
Ollama ModelStringThe name of the Ollama model to use. Default: llama2.
Ollama Base URLStringThe base URL of the Ollama API. Default: http://localhost:11434.
Model TemperatureFloatThe temperature parameter for the model. Adjusts the randomness in the generated embeddings.

Outputs

NameTypeDescription
embeddingsEmbeddingsAn instance for generating embeddings using Ollama.

OpenAI Embeddings

This component is used to load embedding models from OpenAI.

Parameters

Inputs

NameTypeDescription
OpenAI API KeyStringThe API key to use for accessing the OpenAI API.
Default HeadersDictThe default headers for the HTTP requests.
Default QueryNestedDictThe default query parameters for the HTTP requests.
Allowed SpecialListThe special tokens allowed for processing. Default: [].
Disallowed SpecialListThe special tokens disallowed for processing. Default: ["all"].
Chunk SizeIntegerThe chunk size for processing. Default: 1000.
ClientAnyThe HTTP client for making requests.
DeploymentStringThe deployment name for the model. Default: text-embedding-3-small.
Embedding Context LengthIntegerThe length of embedding context. Default: 8191.
Max RetriesIntegerThe maximum number of retries for failed requests. Default: 6.
ModelStringThe name of the model to use. Default: text-embedding-3-small.
Model KwargsNestedDictAdditional keyword arguments for the model.
OpenAI API BaseStringThe base URL of the OpenAI API.
OpenAI API TypeStringThe type of the OpenAI API.
OpenAI API VersionStringThe version of the OpenAI API.
OpenAI OrganizationStringThe organization associated with the API key.
OpenAI ProxyStringThe proxy server for the requests.
Request TimeoutFloatThe timeout for the HTTP requests.
Show Progress BarBooleanWhether to show a progress bar for processing. Default: False.
Skip EmptyBooleanWhether to skip empty inputs. Default: False.
TikToken EnableBooleanWhether to enable TikToken. Default: True.
TikToken Model NameStringThe name of the TikToken model.

Outputs

NameTypeDescription
embeddingsEmbeddingsAn instance for generating embeddings using OpenAI.

Text embedder

This component generates embeddings for a given message using a specified embedding model.

Parameters

Inputs

NameDisplay NameInfo
embedding_modelEmbedding ModelThe embedding model to use for generating embeddings.
messageMessageThe message for which to generate embeddings.

Outputs

NameDisplay NameInfo
embeddingsEmbedding DataA data object containing the original text and its embedding vector.

VertexAI Embeddings

This component is a wrapper around Google Vertex AI Embeddings API.

Parameters

Inputs

NameTypeDescription
credentialsCredentialsThe default custom credentials to use.
locationStringThe default location to use when making API calls. Default: us-central1.
max_output_tokensIntegerThe token limit determines the maximum amount of text output from one prompt. Default: 128.
model_nameStringThe name of the Vertex AI large language model. Default: text-bison.
projectStringThe default GCP project to use when making Vertex API calls.
request_parallelismIntegerThe amount of parallelism allowed for requests issued to VertexAI models. Default: 5.
temperatureFloatTunes the degree of randomness in text generations. Should be a non-negative value. Default: 0.
top_kIntegerHow the model selects tokens for output. The next token is selected from the top k tokens. Default: 40.
top_pFloatTokens are selected from the most probable to least until the sum of their probabilities exceeds the top p value. Default: 0.95.
tuned_model_nameStringThe name of a tuned model. If provided, model_name is ignored.
verboseBooleanThis parameter controls the level of detail in the output. When set to True, it prints internal states of the chain to help debug. Default: False.

Outputs

NameTypeDescription
embeddingsEmbeddingsAn instance for generating embeddings using VertexAI.

Language model bundles

Language model components in Langflow generate text using the selected Large Language Model.

For more information, see Language models.

For more information on a specific model bundle, see the provider's documentation.

AIML

This component creates a ChatOpenAI model instance using the AIML API.

For more information, see AIML documentation.

Parameters

Inputs

NameTypeDescription
max_tokensIntegerThe maximum number of tokens to generate. Set to 0 for unlimited tokens. Range: 0-128000.
model_kwargsDictionaryAdditional keyword arguments for the model.
model_nameStringThe name of the AIML model to use. Options are predefined in AIML_CHAT_MODELS.
aiml_api_baseStringThe base URL of the AIML API. Defaults to https://api.aimlapi.com.
api_keySecretStringThe AIML API Key to use for the model.
temperatureFloatControls randomness in the output. Default: 0.1.

Outputs

NameTypeDescription
modelLanguageModelAn instance of ChatOpenAI configured with the specified parameters.

Amazon Bedrock

This component generates text using Amazon Bedrock LLMs.

For more information, see Amazon Bedrock documentation.

Parameters

Inputs

NameTypeDescription
model_idStringThe ID of the Amazon Bedrock model to use. Options include various models.
aws_access_keySecretStringAWS Access Key for authentication.
aws_secret_keySecretStringAWS Secret Key for authentication.
aws_session_tokenSecretStringThe session key for your AWS account.
credentials_profile_nameStringName of the AWS credentials profile to use.
region_nameStringAWS region name. Default: us-east-1.
model_kwargsDictionaryAdditional keyword arguments for the model.
endpoint_urlStringCustom endpoint URL for the Bedrock service.

Outputs

NameTypeDescription
modelLanguageModelAn instance of ChatBedrock configured with the specified parameters.

Anthropic

This component allows the generation of text using Anthropic Chat and Language models.

For more information, see the Anthropic documentation.

Parameters

Inputs

NameTypeDescription
max_tokensIntegerThe maximum number of tokens to generate. Set to 0 for unlimited tokens. Default: 4096.
modelStringThe name of the Anthropic model to use. Options include various Claude 3 models.
anthropic_api_keySecretStringYour Anthropic API key for authentication.
temperatureFloatControls randomness in the output. Default: 0.1.
anthropic_api_urlStringEndpoint of the Anthropic API. Defaults to https://api.anthropic.com if not specified (advanced).
prefillStringPrefill text to guide the model's response (advanced).

Outputs

NameTypeDescription
modelLanguageModelAn instance of ChatAnthropic configured with the specified parameters.

Azure OpenAI

This component generates text using Azure OpenAI LLM.

For more information, see the Azure OpenAI documentation.

Parameters

Inputs

NameTypeDescription
Model NameStringSpecifies the name of the Azure OpenAI model to be used for text generation.
Azure EndpointStringYour Azure endpoint, including the resource.
Deployment NameStringSpecifies the name of the deployment.
API VersionStringSpecifies the version of the Azure OpenAI API to be used.
API KeySecretStringYour Azure OpenAI API key.
TemperatureFloatSpecifies the sampling temperature. Defaults to 0.7.
Max TokensIntegerSpecifies the maximum number of tokens to generate. Defaults to 1000.
Input ValueStringSpecifies the input text for text generation.
StreamBooleanSpecifies whether to stream the response from the model. Defaults to False.

Outputs

NameTypeDescription
modelLanguageModelAn instance of AzureOpenAI configured with the specified parameters.

Cohere

This component generates text using Cohere's language models.

For more information, see the Cohere documentation.

Parameters

Inputs

NameTypeDescription
Cohere API KeySecretStringYour Cohere API key.
Max TokensIntegerSpecifies the maximum number of tokens to generate. Defaults to 256.
TemperatureFloatSpecifies the sampling temperature. Defaults to 0.75.
Input ValueStringSpecifies the input text for text generation.

Outputs

NameTypeDescription
modelLanguageModelAn instance of the Cohere model configured with the specified parameters.

DeepSeek

This component generates text using DeepSeek's language models.

For more information, see the DeepSeek documentation.

Parameters

Inputs

NameTypeDescription
max_tokensIntegerMaximum number of tokens to generate. Set to 0 for unlimited. Range: 0-128000.
model_kwargsDictionaryAdditional keyword arguments for the model.
json_modeBooleanIf True, outputs JSON regardless of passing a schema.
model_nameStringThe DeepSeek model to use. Default: deepseek-chat.
api_baseStringBase URL for API requests. Default: https://api.deepseek.com.
api_keySecretStringYour DeepSeek API key for authentication.
temperatureFloatControls randomness in responses. Range: [0.0, 2.0]. Default: 1.0.
seedIntegerNumber initialized for random number generation. Use the same seed integer for more reproducible results, and use a different seed number for more random results.

Outputs

NameTypeDescription
modelLanguageModelAn instance of ChatOpenAI configured with the specified parameters.

Google Generative AI

This component generates text using Google's Generative AI models.

For more information, see the Google Generative AI documentation.

Parameters

Inputs

NameTypeDescription
Google API KeySecretStringYour Google API key to use for the Google Generative AI.
ModelStringThe name of the model to use, such as "gemini-pro".
Max Output TokensIntegerThe maximum number of tokens to generate.
TemperatureFloatRun inference with this temperature.
Top KIntegerConsider the set of top K most probable tokens.
Top PFloatThe maximum cumulative probability of tokens to consider when sampling.
NIntegerNumber of chat completions to generate for each prompt.

Outputs

NameTypeDescription
modelLanguageModelAn instance of ChatGoogleGenerativeAI configured with the specified parameters.

Groq

This component generates text using Groq's language models.

  1. To use this component in a flow, connect it as a Model in a flow like the Basic prompting flow, or select it as the Model Provider if you're using an Agent component.

Groq component in a basic prompting flow

  1. In the Groq API Key field, paste your Groq API key. The Groq model component automatically retrieves a list of the latest models. To refresh your list of models, click .
  2. In the Model field, select the model you want to use for your LLM. This example uses llama-3.1-8b-instant, which Groq recommends for real-time conversational interfaces.
  3. In the Prompt component, enter:

_10
You are a helpful assistant who supports their claims with sources.

  1. Click Playground and ask your Groq LLM a question. The responses include a list of sources.

For more information, see the Groq documentation.

Parameters

Inputs

NameTypeDescription
groq_api_keySecretStringAPI key for the Groq API.
groq_api_baseStringBase URL path for API requests. Default: https://api.groq.com.
max_tokensIntegerThe maximum number of tokens to generate.
temperatureFloatControls randomness in the output. Range: [0.0, 1.0]. Default: 0.1.
nIntegerNumber of chat completions to generate for each prompt.
model_nameStringThe name of the Groq model to use. Options are dynamically fetched from the Groq API.
tool_mode_enabledBoolIf enabled, the component only displays models that work with tools.

Outputs

NameTypeDescription
modelLanguageModelAn instance of ChatGroq configured with the specified parameters.

Hugging Face API

This component sends requests to the Hugging Face API to generate text using the model specified in the Model ID field.

The Hugging Face API is a hosted inference API for models hosted on Hugging Face, and requires a Hugging Face API token to authenticate.

In this example based on the Basic prompting flow, the Hugging Face API model component replaces the Open AI model. By selecting different hosted models, you can see how different models return different results.

  1. Create a Basic prompting flow.

  2. Replace the OpenAI model component with a Hugging Face API model component.

  3. In the Hugging Face API component, add your Hugging Face API token to the API Token field.

  4. Open the Playground and ask a question to the model, and see how it responds.

  5. Try different models, and see how they perform differently.

For more information, see the Hugging Face documentation.

Parameters

Inputs

NameTypeDescription
model_idStringThe model ID from Hugging Face Hub. For example, "gpt2", "facebook/bart-large".
huggingfacehub_api_tokenSecretStringYour Hugging Face API token for authentication.
temperatureFloatControls randomness in the output. Range: [0.0, 1.0]. Default: 0.7.
max_new_tokensIntegerMaximum number of tokens to generate. Default: 512.
top_pFloatNucleus sampling parameter. Range: [0.0, 1.0]. Default: 0.95.
top_kIntegerTop-k sampling parameter. Default: 50.
model_kwargsDictionaryAdditional keyword arguments to pass to the model.

Outputs

NameTypeDescription
modelLanguageModelAn instance of HuggingFaceHub configured with the specified parameters.

IBM watsonx.ai

This component generates text using IBM watsonx.ai foundation models.

To use IBM watsonx.ai model components, replace a model component with the IBM watsonx.ai component in a flow.

An example flow looks like the following:

IBM watsonx model component in a basic prompting flow

The values for API endpoint, Project ID, API key, and Model Name are found in your IBM watsonx.ai deployment. For more information, see the Langchain documentation.

Parameters

Inputs

NameTypeDescription
urlStringThe base URL of the watsonx API.
project_idStringYour watsonx Project ID.
api_keySecretStringYour IBM watsonx API Key.
model_nameStringThe name of the watsonx model to use. Options are dynamically fetched from the API.
max_tokensIntegerThe maximum number of tokens to generate. Default: 1000.
stop_sequenceStringThe sequence where generation should stop.
temperatureFloatControls randomness in the output. Default: 0.1.
top_pFloatControls nucleus sampling, which limits the model to tokens whose probability is below the top_p value. Range: Default: 0.9.
frequency_penaltyFloatControls frequency penalty. A positive value decreases the probability of repeating tokens, and a negative value increases the probability. Range: Default: 0.5.
presence_penaltyFloatControls presence penalty. A positive value increases the likelihood of new topics being introduced. Default: 0.3.
seedIntegerA random seed for the model. Default: 8.
logprobsBooleanWhether to return log probabilities of output tokens or not. Default: True.
top_logprobsIntegerThe number of most likely tokens to return at each position. Default: 3.
logit_biasStringA JSON string of token IDs to bias or suppress.

Outputs

NameTypeDescription
modelLanguageModelAn instance of ChatWatsonx configured with the specified parameters.

LMStudio

This component generates text using LM Studio's local language models.

For more information, see LM Studio documentation.

Parameters

Inputs

NameTypeDescription
base_urlStringThe URL where LM Studio is running. Default: "http://localhost:1234".
max_tokensIntegerMaximum number of tokens to generate in the response. Default: 512.
temperatureFloatControls randomness in the output. Range: [0.0, 2.0]. Default: 0.7.
top_pFloatControls diversity via nucleus sampling. Range: [0.0, 1.0]. Default: 1.0.
stopList[String]List of strings that stop generation when encountered.
streamBooleanWhether to stream the response. Default: False.
presence_penaltyFloatPenalizes repeated tokens. Range: [-2.0, 2.0]. Default: 0.0.
frequency_penaltyFloatPenalizes frequent tokens. Range: [-2.0, 2.0]. Default: 0.0.

Outputs

NameTypeDescription
modelLanguageModelAn instance of LMStudio configured with the specified parameters.

Maritalk

This component generates text using Maritalk LLMs.

For more information, see Maritalk documentation.

Parameters

Inputs

NameTypeDescription
max_tokensIntegerThe maximum number of tokens to generate. Set to 0 for unlimited tokens. Default: 512.
model_nameStringThe name of the Maritalk model to use. Options: sabia-2-small, sabia-2-medium. Default: sabia-2-small.
api_keySecretStringThe Maritalk API Key to use for authentication.
temperatureFloatControls randomness in the output. Range: [0.0, 1.0]. Default: 0.5.
endpoint_urlStringThe Maritalk API endpoint. Default: https://api.maritalk.com.

Outputs

NameTypeDescription
modelLanguageModelAn instance of ChatMaritalk configured with the specified parameters.

Mistral

This component generates text using MistralAI LLMs.

For more information, see Mistral AI documentation.

Parameters

Inputs

NameTypeDescription
max_tokensIntegerThe maximum number of tokens to generate. Set to 0 for unlimited tokens (advanced).
model_nameStringThe name of the Mistral AI model to use. Options include open-mixtral-8x7b, open-mixtral-8x22b, mistral-small-latest, mistral-medium-latest, mistral-large-latest, and codestral-latest. Default: codestral-latest.
mistral_api_baseStringThe base URL of the Mistral API. Defaults to https://api.mistral.ai/v1 (advanced).
api_keySecretStringThe Mistral API Key to use for authentication.
temperatureFloatControls randomness in the output. Default: 0.5.
max_retriesIntegerMaximum number of retries for API calls. Default: 5 (advanced).
timeoutIntegerTimeout for API calls in seconds. Default: 60 (advanced).
max_concurrent_requestsIntegerMaximum number of concurrent API requests. Default: 3 (advanced).
top_pFloatNucleus sampling parameter. Default: 1 (advanced).
random_seedIntegerSeed for random number generation. Default: 1 (advanced).
safe_modeBooleanEnables safe mode for content generation (advanced).

Outputs

NameTypeDescription
modelLanguageModelAn instance of ChatMistralAI configured with the specified parameters.

Novita AI

This component generates text using Novita AI's language models.

For more information, see Novita AI documentation.

Parameters

Inputs

NameTypeDescription
api_keySecretStringYour Novita AI API Key.
modelStringThe id of the Novita AI model to use.
max_tokensIntegerThe maximum number of tokens to generate. Set to 0 for unlimited tokens.
temperatureFloatControls randomness in the output. Range: [0.0, 1.0]. Default: 0.7.
top_pFloatControls the nucleus sampling. Range: [0.0, 1.0]. Default: 1.0.
frequency_penaltyFloatControls the frequency penalty. Range: [0.0, 2.0]. Default: 0.0.
presence_penaltyFloatControls the presence penalty. Range: [0.0, 2.0]. Default: 0.0.

Outputs

NameTypeDescription
modelLanguageModelAn instance of Novita AI model configured with the specified parameters.

NVIDIA

This component generates text using NVIDIA LLMs.

For more information, see NVIDIA AI documentation.

Parameters

Inputs

NameTypeDescription
max_tokensIntegerThe maximum number of tokens to generate. Set to 0 for unlimited tokens (advanced).
model_nameStringThe name of the NVIDIA model to use. Default: mistralai/mixtral-8x7b-instruct-v0.1.
base_urlStringThe base URL of the NVIDIA API. Default: https://integrate.api.nvidia.com/v1.
nvidia_api_keySecretStringThe NVIDIA API Key for authentication.
temperatureFloatControls randomness in the output. Default: 0.1.
seedIntegerThe seed controls the reproducibility of the job (advanced). Default: 1.

Outputs

NameTypeDescription
modelLanguageModelAn instance of ChatNVIDIA configured with the specified parameters.

Ollama

This component generates text using Ollama's language models.

To use this component in a flow, connect Langflow to your locally running Ollama server and select a model.

  1. In the Ollama component, in the Base URL field, enter the address for your locally running Ollama server. This value is set as the OLLAMA_HOST environment variable in Ollama. The default base URL is http://127.0.0.1:11434.
  2. To refresh the server's list of models, click .
  3. In the Model Name field, select a model. This example uses llama3.2:latest.
  4. Connect the Ollama model component to a flow. For example, this flow connects a local Ollama server running a Llama 3.2 model as the custom model for an Agent component.

Ollama model as Agent custom model

For more information, see the Ollama documentation.

Parameters

Inputs

NameTypeDescription
Base URLStringEndpoint of the Ollama API.
Model NameStringThe model name to use.
TemperatureFloatControls the creativity of model responses.

Outputs

NameTypeDescription
modelLanguageModelAn instance of an Ollama model configured with the specified parameters.

OpenAI

This component generates text using OpenAI's language models.

For more information, see OpenAI documentation.

Parameters

Inputs

NameTypeDescription
api_keySecretStringYour OpenAI API Key.
modelStringThe name of the OpenAI model to use. Options include "gpt-3.5-turbo" and "gpt-4".
max_tokensIntegerThe maximum number of tokens to generate. Set to 0 for unlimited tokens.
temperatureFloatControls randomness in the output. Range: [0.0, 1.0]. Default: 0.7.
top_pFloatControls the nucleus sampling. Range: [0.0, 1.0]. Default: 1.0.
frequency_penaltyFloatControls the frequency penalty. Range: [0.0, 2.0]. Default: 0.0.
presence_penaltyFloatControls the presence penalty. Range: [0.0, 2.0]. Default: 0.0.

Outputs

NameTypeDescription
modelLanguageModelAn instance of OpenAI model configured with the specified parameters.

OpenRouter

This component generates text using OpenRouter's unified API for multiple AI models from different providers.

For more information, see OpenRouter documentation.

Parameters

Inputs

NameTypeDescription
api_keySecretStringYour OpenRouter API key for authentication.
site_urlStringYour site URL for OpenRouter rankings (advanced).
app_nameStringYour app name for OpenRouter rankings (advanced).
providerStringThe AI model provider to use.
model_nameStringThe specific model to use for chat completion.
temperatureFloatControls randomness in the output. Range: [0.0, 2.0]. Default: 0.7.
max_tokensIntegerThe maximum number of tokens to generate (advanced).

Outputs

NameTypeDescription
modelLanguageModelAn instance of ChatOpenAI configured with the specified parameters.

Perplexity

This component generates text using Perplexity's language models.

For more information, see Perplexity documentation.

Parameters

Inputs

NameTypeDescription
model_nameStringThe name of the Perplexity model to use. Options include various Llama 3.1 models.
max_output_tokensIntegerThe maximum number of tokens to generate.
api_keySecretStringThe Perplexity API Key for authentication.
temperatureFloatControls randomness in the output. Default: 0.75.
top_pFloatThe maximum cumulative probability of tokens to consider when sampling (advanced).
nIntegerNumber of chat completions to generate for each prompt (advanced).
top_kIntegerNumber of top tokens to consider for top-k sampling. Must be positive (advanced).

Outputs

NameTypeDescription
modelLanguageModelAn instance of ChatPerplexity configured with the specified parameters.

Qianfan

This component generates text using Qianfan's language models.

For more information, see Qianfan documentation.

SambaNova

This component generates text using SambaNova LLMs.

For more information, see Sambanova Cloud documentation.

Parameters

Inputs

NameTypeDescription
sambanova_urlStringBase URL path for API requests. Default: https://api.sambanova.ai/v1/chat/completions.
sambanova_api_keySecretStringYour SambaNova API Key.
model_nameStringThe name of the Sambanova model to use. Options include various Llama models.
max_tokensIntegerThe maximum number of tokens to generate. Set to 0 for unlimited tokens.
temperatureFloatControls randomness in the output. Range: [0.0, 1.0]. Default: 0.07.

Outputs

NameTypeDescription
modelLanguageModelAn instance of SambaNova model configured with the specified parameters.

VertexAI

This component generates text using Vertex AI LLMs.

For more information, see Google Vertex AI documentation.

Parameters

Inputs

NameTypeDescription
credentialsFileJSON credentials file. Leave empty to fall back to environment variables. File type: JSON.
model_nameStringThe name of the Vertex AI model to use. Default: "gemini-1.5-pro".
projectStringThe project ID (advanced).
locationStringThe location for the Vertex AI API. Default: "us-central1" (advanced).
max_output_tokensIntegerThe maximum number of tokens to generate (advanced).
max_retriesIntegerMaximum number of retries for API calls. Default: 1 (advanced).
temperatureFloatControls randomness in the output. Default: 0.0.
top_kIntegerThe number of highest probability vocabulary tokens to keep for top-k-filtering (advanced).
top_pFloatThe cumulative probability of parameter highest probability vocabulary tokens to keep for nucleus sampling. Default: 0.95 (advanced).
verboseBooleanWhether to print verbose output. Default: False (advanced).

Outputs

NameTypeDescription
modelLanguageModelAn instance of ChatVertexAI configured with the specified parameters.

xAI

This component generates text using xAI models like Grok.

For more information, see the xAI documentation.

Parameters

Inputs

NameTypeDescription
max_tokensIntegerMaximum number of tokens to generate. Set to 0 for unlimited. Range: 0-128000.
model_kwargsDictionaryAdditional keyword arguments for the model.
json_modeBooleanIf True, outputs JSON regardless of passing a schema.
model_nameStringThe xAI model to use. Default: grok-2-latest.
base_urlStringBase URL for API requests. Default: https://api.x.ai/v1.
api_keySecretStringYour xAI API key for authentication.
temperatureFloatControls randomness in the output. Range: [0.0, 2.0]. Default: 0.1.
seedIntegerControls reproducibility of the job.

Outputs

NameTypeDescription
modelLanguageModelAn instance of ChatOpenAI configured with the specified parameters.

Memory bundles

AstraDBChatMemory Component

This component creates an AstraDBChatMessageHistory instance, which stores and retrieves chat messages using Astra DB, a cloud-native database service.

Parameters

Inputs

NameTypeDescription
collection_nameStringThe name of the Astra DB collection for storing messages. Required.
tokenSecretStringThe authentication token for Astra DB access. Required.
api_endpointSecretStringThe API endpoint URL for the Astra DB service. Required.
namespaceStringThe optional namespace within Astra DB for the collection.
session_idMessageTextThe unique identifier for the chat session. Uses the current session ID if not provided.

Outputs

NameTypeDescription
message_historyBaseChatMessageHistoryAn instance of AstraDBChatMessageHistory for the session.

CassandraChatMemory Component

This component creates a CassandraChatMessageHistory instance, enabling storage and retrieval of chat messages using Apache Cassandra or DataStax Astra DB.

Parameters

Inputs

NameTypeDescription
database_refMessageTextThe contact points for the Cassandra database or Astra DB database ID. Required.
usernameMessageTextThe username for Cassandra. Leave empty for Astra DB.
tokenSecretStringThe password for Cassandra or the token for Astra DB. Required.
keyspaceMessageTextThe keyspace in Cassandra or namespace in Astra DB. Required.
table_nameMessageTextThe name of the table or collection for storing messages. Required.
session_idMessageTextThe unique identifier for the chat session. Optional.
cluster_kwargsDictionaryAdditional keyword arguments for the Cassandra cluster configuration. Optional.

Outputs

NameTypeDescription
message_historyBaseChatMessageHistoryAn instance of CassandraChatMessageHistory for the session.

Mem0 Chat Memory

The Mem0 Chat Memory component retrieves and stores chat messages using Mem0 memory storage.

Parameters

Inputs

NameDisplay NameInfo
mem0_configMem0 ConfigurationThe configuration dictionary for initializing the Mem0 memory instance.
ingest_messageMessage to IngestThe message content to be ingested into Mem0 memory.
existing_memoryExisting Memory InstanceAn optional existing Mem0 memory instance.
user_idUser IDThe identifier for the user associated with the messages.
search_querySearch QueryThe input text for searching related memories in Mem0.
mem0_api_keyMem0 API KeyThe API key for the Mem0 platform. Leave empty to use the local version.
metadataMetadataThe additional metadata to associate with the ingested message.
openai_api_keyOpenAI API KeyThe API key for OpenAI. Required when using OpenAI embeddings without a provided configuration.

Outputs

NameDisplay NameInfo
memoryMem0 MemoryThe resulting Mem0 Memory object after ingesting data.
search_resultsSearch ResultsThe search results from querying Mem0 memory.

Redis Chat Memory

This component retrieves and stores chat messages from Redis.

Parameters

Inputs

NameDisplay NameInfo
hosthostnameThe IP address or hostname.
portportThe Redis Port Number.
databasedatabaseThe Redis database.
usernameUsernameThe Redis username.
passwordPasswordThe password for the username.
key_prefixKey prefixThe key prefix.
session_idSession IDThe unique session identifier for the message.

Outputs

NameDisplay NameInfo
memoryMemoryThe Redis chat message history object.

ZepChatMemory Component

This component creates a ZepChatMessageHistory instance, enabling storage and retrieval of chat messages using Zep, a memory server for Large Language Models (LLMs).

Parameters

Inputs

NameTypeDescription
urlMessageTextThe URL of the Zep instance. Required.
api_keySecretStringThe API Key for authentication with the Zep instance.
api_base_pathDropdownThe API version to use. Options include api/v1 or api/v2.
session_idMessageTextThe unique identifier for the chat session. Optional.

Outputs

NameTypeDescription
message_historyBaseChatMessageHistoryAn instance of ZepChatMessageHistory for the session.
Search