Vector databases are used to store and search for vectors. They can be used to store embeddings, search for similar vectors, and perform other vector operations.
This component implements a Vector Store using Astra DB with search capabilities.
For more information, see the DataStax documentation.
Name | Display Name | Info |
---|
collection_name | Collection Name | The name of the collection within Astra DB where the vectors will be stored (required) |
token | Astra DB Application Token | Authentication token for accessing Astra DB (required) |
api_endpoint | API Endpoint | API endpoint URL for the Astra DB service (required) |
search_input | Search Input | Query string for similarity search |
ingest_data | Ingest Data | Data to be ingested into the vector store |
namespace | Namespace | Optional namespace within Astra DB to use for the collection |
embedding_choice | Embedding Model or Astra Vectorize | Determines whether to use an Embedding Model or Astra Vectorize for the collection |
embedding | Embedding Model | Allows an embedding model configuration (when using Embedding Model) |
provider | Vectorize Provider | Provider for Astra Vectorize (when using Astra Vectorize) |
metric | Metric | Optional distance metric for vector comparisons |
batch_size | Batch Size | Optional number of data to process in a single batch |
setup_mode | Setup Mode | Configuration mode for setting up the vector store (options: "Sync", "Async", "Off", default: "Sync") |
pre_delete_collection | Pre Delete Collection | Boolean flag to determine whether to delete the collection before creating a new one |
number_of_results | Number of Results | Number of results to return in similarity search (default: 4) |
search_type | Search Type | Search type to use (options: "Similarity", "Similarity with score threshold", "MMR (Max Marginal Relevance)") |
search_score_threshold | Search Score Threshold | Minimum similarity score threshold for search results |
search_filter | Search Metadata Filter | Optional dictionary of filters to apply to the search query |
Name | Display Name | Info |
---|
vector_store | Vector Store | Built Astra DB vector store |
search_results | Search Results | Results of the similarity search as a list of Data objects |
This component creates a Cassandra Vector Store with search capabilities.
For more information, see the Cassandra documentation.
Name | Type | Description |
---|
database_ref | String | Contact points for the database or AstraDB database ID |
username | String | Username for the database (leave empty for AstraDB) |
token | SecretString | User password for the database or AstraDB token |
keyspace | String | Table Keyspace or AstraDB namespace |
table_name | String | Name of the table or AstraDB collection |
ttl_seconds | Integer | Time-to-live for added texts |
batch_size | Integer | Number of data to process in a single batch |
setup_mode | String | Configuration mode for setting up the Cassandra table |
cluster_kwargs | Dict | Additional keyword arguments for the Cassandra cluster |
search_query | String | Query for similarity search |
ingest_data | Data | Data to be ingested into the vector store |
embedding | Embeddings | Embedding function to use |
number_of_results | Integer | Number of results to return in search |
search_type | String | Type of search to perform |
search_score_threshold | Float | Minimum similarity score for search results |
search_filter | Dict | Metadata filters for search query |
body_search | String | Document textual search terms |
enable_body_search | Boolean | Flag to enable body search |
Name | Type | Description |
---|
vector_store | Cassandra | Cassandra vector store instance |
search_results | List[Data] | Results of similarity search |
This component implements a Cassandra Graph Vector Store with search capabilities.
Name | Display Name | Info |
---|
database_ref | Contact Points / Astra Database ID | Contact points for the database or AstraDB database ID (required) |
username | Username | Username for the database (leave empty for AstraDB) |
token | Password / AstraDB Token | User password for the database or AstraDB token (required) |
keyspace | Keyspace | Table Keyspace or AstraDB namespace (required) |
table_name | Table Name | The name of the table or AstraDB collection where vectors will be stored (required) |
setup_mode | Setup Mode | Configuration mode for setting up the Cassandra table (options: "Sync", "Off", default: "Sync") |
cluster_kwargs | Cluster arguments | Optional dictionary of additional keyword arguments for the Cassandra cluster |
search_query | Search Query | Query string for similarity search |
ingest_data | Ingest Data | Data to be ingested into the vector store (list of Data objects) |
embedding | Embedding | Embedding model to use |
number_of_results | Number of Results | Number of results to return in similarity search (default: 4) |
search_type | Search Type | Search type to use (options: "Traversal", "MMR traversal", "Similarity", "Similarity with score threshold", "MMR (Max Marginal Relevance)", default: "Traversal") |
depth | Depth of traversal | The maximum depth of edges to traverse (for "Traversal" or "MMR traversal" search types, default: 1) |
search_score_threshold | Search Score Threshold | Minimum similarity score threshold for search results (for "Similarity with score threshold" search type) |
search_filter | Search Metadata Filter | Optional dictionary of filters to apply to the search query |
Name | Display Name | Info |
---|
vector_store | Vector Store | Built Cassandra Graph vector store |
search_results | Search Results | Results of the similarity search as a list of Data objects |
This component creates a Chroma Vector Store with search capabilities.
For more information, see the Chroma documentation.
Name | Type | Description |
---|
collection_name | String | The name of the Chroma collection. Default: "langflow". |
persist_directory | String | The directory to persist the Chroma database. |
search_query | String | The query to search for in the vector store. |
ingest_data | Data | The data to ingest into the vector store (list of Data objects). |
embedding | Embeddings | The embedding function to use for the vector store. |
chroma_server_cors_allow_origins | String | CORS allow origins for the Chroma server. |
chroma_server_host | String | Host for the Chroma server. |
chroma_server_http_port | Integer | HTTP port for the Chroma server. |
chroma_server_grpc_port | Integer | gRPC port for the Chroma server. |
chroma_server_ssl_enabled | Boolean | Enable SSL for the Chroma server. |
allow_duplicates | Boolean | Allow duplicate documents in the vector store. |
search_type | String | Type of search to perform: "Similarity" or "MMR". |
number_of_results | Integer | Number of results to return from the search. Default: 10. |
limit | Integer | Limit the number of records to compare when Allow Duplicates is False. |
Name | Type | Description |
---|
vector_store | Chroma | Chroma vector store instance |
search_results | List[Data] | Results of similarity search |
This component implements a Clickhouse Vector Store with search capabilities.
For more information, see the CLickhouse Documentation.
Name | Display Name | Info |
---|
host | hostname | Clickhouse server hostname (required, default: "localhost") |
port | port | Clickhouse server port (required, default: 8123) |
database | database | Clickhouse database name (required) |
table | Table name | Clickhouse table name (required) |
username | The ClickHouse user name. | Username for authentication (required) |
password | The password for username. | Password for authentication (required) |
index_type | index_type | Type of the index (options: "annoy", "vector_similarity", default: "annoy") |
metric | metric | Metric to compute distance (options: "angular", "euclidean", "manhattan", "hamming", "dot", default: "angular") |
secure | Use https/TLS | Overrides inferred values from the interface or port arguments (default: false) |
index_param | Param of the index | Index parameters (default: "'L2Distance',100") |
index_query_params | index query params | Additional index query parameters |
search_query | Search Query | Query string for similarity search |
ingest_data | Ingest Data | Data to be ingested into the vector store |
embedding | Embedding | Embedding model to use |
number_of_results | Number of Results | Number of results to return in similarity search (default: 4) |
score_threshold | Score threshold | Threshold for similarity scores |
Name | Display Name | Info |
---|
vector_store | Vector Store | Built Clickhouse vector store |
search_results | Search Results | Results of the similarity search as a list of Data objects |
This component creates a Couchbase Vector Store with search capabilities.
For more information, see the Couchbase documentation.
Name | Type | Description |
---|
couchbase_connection_string | SecretString | Couchbase Cluster connection string (required). |
couchbase_username | String | Couchbase username (required). |
couchbase_password | SecretString | Couchbase password (required). |
bucket_name | String | Name of the Couchbase bucket (required). |
scope_name | String | Name of the Couchbase scope (required). |
collection_name | String | Name of the Couchbase collection (required). |
index_name | String | Name of the Couchbase index (required). |
search_query | String | The query to search for in the vector store. |
ingest_data | Data | The data to ingest into the vector store (list of Data objects). |
embedding | Embeddings | The embedding function to use for the vector store. |
number_of_results | Integer | Number of results to return from the search. Default: 4 (advanced). |
Name | Type | Description |
---|
vector_store | CouchbaseVectorStore | A Couchbase vector store instance configured with the specified parameters. |
This component creates a FAISS Vector Store with search capabilities.
For more information, see the FAISS documentation.
Name | Type | Description |
---|
index_name | String | The name of the FAISS index. Default: "langflow_index". |
persist_directory | String | Path to save the FAISS index. It will be relative to where Langflow is running. |
search_query | String | The query to search for in the vector store. |
ingest_data | Data | The data to ingest into the vector store (list of Data objects or documents). |
allow_dangerous_deserialization | Boolean | Set to True to allow loading pickle files from untrusted sources. Default: True (advanced). |
embedding | Embeddings | The embedding function to use for the vector store. |
number_of_results | Integer | Number of results to return from the search. Default: 4 (advanced). |
Name | Type | Description |
---|
vector_store | FAISS | A FAISS vector store instance configured with the specified parameters. |
This component implements a Vector Store using HCD.
Name | Display Name | Info |
---|
collection_name | Collection Name | The name of the collection within HCD where the vectors will be stored (required) |
username | HCD Username | Authentication username for accessing HCD (default: "hcd-superuser", required) |
password | HCD Password | Authentication password for accessing HCD (required) |
api_endpoint | HCD API Endpoint | API endpoint URL for the HCD service (required) |
search_input | Search Input | Query string for similarity search |
ingest_data | Ingest Data | Data to be ingested into the vector store |
namespace | Namespace | Optional namespace within HCD to use for the collection (default: "default_namespace") |
ca_certificate | CA Certificate | Optional CA certificate for TLS connections to HCD |
metric | Metric | Optional distance metric for vector comparisons (options: "cosine", "dot_product", "euclidean") |
batch_size | Batch Size | Optional number of data to process in a single batch |
bulk_insert_batch_concurrency | Bulk Insert Batch Concurrency | Optional concurrency level for bulk insert operations |
bulk_insert_overwrite_concurrency | Bulk Insert Overwrite Concurrency | Optional concurrency level for bulk insert operations that overwrite existing data |
bulk_delete_concurrency | Bulk Delete Concurrency | Optional concurrency level for bulk delete operations |
setup_mode | Setup Mode | Configuration mode for setting up the vector store (options: "Sync", "Async", "Off", default: "Sync") |
pre_delete_collection | Pre Delete Collection | Boolean flag to determine whether to delete the collection before creating a new one |
metadata_indexing_include | Metadata Indexing Include | Optional list of metadata fields to include in the indexing |
embedding | Embedding or Astra Vectorize | Allows either an embedding model or an Astra Vectorize configuration |
metadata_indexing_exclude | Metadata Indexing Exclude | Optional list of metadata fields to exclude from the indexing |
collection_indexing_policy | Collection Indexing Policy | Optional dictionary defining the indexing policy for the collection |
number_of_results | Number of Results | Number of results to return in similarity search (default: 4) |
search_type | Search Type | Search type to use (options: "Similarity", "Similarity with score threshold", "MMR (Max Marginal Relevance)", default: "Similarity") |
search_score_threshold | Search Score Threshold | Minimum similarity score threshold for search results (default: 0) |
search_filter | Search Metadata Filter | Optional dictionary of filters to apply to the search query |
Name | Display Name | Info |
---|
vector_store | Vector Store | Built HCD vector store instance |
search_results | Search Results | Results of similarity search as a list of Data objects |
This component creates a Milvus Vector Store with search capabilities.
For more information, see the Milvus documentation.
Name | Type | Description |
---|
collection_name | String | Name of the Milvus collection |
collection_description | String | Description of the Milvus collection |
uri | String | Connection URI for Milvus |
password | SecretString | Password for Milvus |
username | SecretString | Username for Milvus |
batch_size | Integer | Number of data to process in a single batch |
search_query | String | Query for similarity search |
ingest_data | Data | Data to be ingested into the vector store |
embedding | Embeddings | Embedding function to use |
number_of_results | Integer | Number of results to return in search |
search_type | String | Type of search to perform |
search_score_threshold | Float | Minimum similarity score for search results |
search_filter | Dict | Metadata filters for search query |
setup_mode | String | Configuration mode for setting up the vector store |
vector_dimensions | Integer | Number of dimensions of the vectors |
pre_delete_collection | Boolean | Whether to delete the collection before creating a new one |
Name | Type | Description |
---|
vector_store | Milvus | A Milvus vector store instance configured with the specified parameters. |
This component creates a MongoDB Atlas Vector Store with search capabilities.
For more information, see the MongoDB Atlas documentation.
Name | Type | Description |
---|
mongodb_atlas_cluster_uri | SecretString | MongoDB Atlas Cluster URI |
db_name | String | Database name |
collection_name | String | Collection name |
index_name | String | Index name |
search_query | String | Query for similarity search |
ingest_data | Data | Data to be ingested into the vector store |
embedding | Embeddings | Embedding function to use |
number_of_results | Integer | Number of results to return in search |
Name | Type | Description |
---|
vector_store | MongoDBAtlasVectorSearch | MongoDB Atlas vector store instance |
search_results | List[Data] | Results of similarity search |
This component creates a PGVector Vector Store with search capabilities.
For more information, see the PGVector documentation.
Name | Type | Description |
---|
pg_server_url | SecretString | PostgreSQL server connection string |
collection_name | String | Table name for the vector store |
search_query | String | Query for similarity search |
ingest_data | Data | Data to be ingested into the vector store |
embedding | Embeddings | Embedding function to use |
number_of_results | Integer | Number of results to return in search |
Name | Type | Description |
---|
vector_store | PGVector | PGVector vector store instance |
search_results | List[Data] | Results of similarity search |
This component creates a Pinecone Vector Store with search capabilities.
For more information, see the Pinecone documentation.
Name | Type | Description |
---|
index_name | String | Name of the Pinecone index |
namespace | String | Namespace for the index |
distance_strategy | String | Strategy for calculating distance between vectors |
pinecone_api_key | SecretString | API key for Pinecone |
text_key | String | Key in the record to use as text |
search_query | String | Query for similarity search |
ingest_data | Data | Data to be ingested into the vector store |
embedding | Embeddings | Embedding function to use |
number_of_results | Integer | Number of results to return in search |
Name | Type | Description |
---|
vector_store | Pinecone | Pinecone vector store instance |
search_results | List[Data] | Results of similarity search |
This component creates a Qdrant Vector Store with search capabilities.
For more information, see the Qdrant documentation.
Name | Type | Description |
---|
collection_name | String | Name of the Qdrant collection |
host | String | Qdrant server host |
port | Integer | Qdrant server port |
grpc_port | Integer | Qdrant gRPC port |
api_key | SecretString | API key for Qdrant |
prefix | String | Prefix for Qdrant |
timeout | Integer | Timeout for Qdrant operations |
path | String | Path for Qdrant |
url | String | URL for Qdrant |
distance_func | String | Distance function for vector similarity |
content_payload_key | String | Key for content payload |
metadata_payload_key | String | Key for metadata payload |
search_query | String | Query for similarity search |
ingest_data | Data | Data to be ingested into the vector store |
embedding | Embeddings | Embedding function to use |
number_of_results | Integer | Number of results to return in search |
Name | Type | Description |
---|
vector_store | Qdrant | Qdrant vector store instance |
search_results | List[Data] | Results of similarity search |
This component creates a Redis Vector Store with search capabilities.
For more information, see the Redis documentation.
Name | Type | Description |
---|
redis_server_url | SecretString | Redis server connection string |
redis_index_name | String | Name of the Redis index |
code | String | Custom code for Redis (advanced) |
schema | String | Schema for Redis index |
search_query | String | Query for similarity search |
ingest_data | Data | Data to be ingested into the vector store |
number_of_results | Integer | Number of results to return in search |
embedding | Embeddings | Embedding function to use |
Name | Type | Description |
---|
vector_store | Redis | Redis vector store instance |
search_results | List[Data] | Results of similarity search |
This component creates a connection to a Supabase Vector Store with search capabilities.
For more information, see the Supabase documentation.
Name | Type | Description |
---|
supabase_url | String | URL of the Supabase instance |
supabase_service_key | SecretString | Service key for Supabase authentication |
table_name | String | Name of the table in Supabase |
query_name | String | Name of the query to use |
search_query | String | Query for similarity search |
ingest_data | Data | Data to be ingested into the vector store |
embedding | Embeddings | Embedding function to use |
number_of_results | Integer | Number of results to return in search |
Name | Type | Description |
---|
vector_store | SupabaseVectorStore | Supabase vector store instance |
search_results | List[Data] | Results of similarity search |
This component creates an Upstash Vector Store with search capabilities.
For more information, see the Upstash documentation.
Name | Type | Description |
---|
index_url | String | The URL of the Upstash index |
index_token | SecretString | The token for the Upstash index |
text_key | String | The key in the record to use as text |
namespace | String | Namespace for the index |
search_query | String | Query for similarity search |
metadata_filter | String | Filters documents by metadata |
ingest_data | Data | Data to be ingested into the vector store |
embedding | Embeddings | Embedding function to use (optional) |
number_of_results | Integer | Number of results to return in search |
Name | Type | Description |
---|
vector_store | UpstashVectorStore | Upstash vector store instance |
search_results | List[Data] | Results of similarity search |
This component creates a Vectara Vector Store with search capabilities.
For more information, see the Vectara documentation.
Name | Type | Description |
---|
vectara_customer_id | String | Vectara customer ID |
vectara_corpus_id | String | Vectara corpus ID |
vectara_api_key | SecretString | Vectara API key |
embedding | Embeddings | Embedding function to use (optional) |
ingest_data | List[Document/Data] | Data to be ingested into the vector store |
search_query | String | Query for similarity search |
number_of_results | Integer | Number of results to return in search |
Name | Type | Description |
---|
vector_store | VectaraVectorStore | Vectara vector store instance |
search_results | List[Data] | Results of similarity search |
This component searches a Vectara Vector Store for documents based on the provided input.
For more information, see the Vectara documentation.
Name | Type | Description |
---|
search_type | String | Type of search, such as "Similarity" or "MMR" |
input_value | String | Search query |
vectara_customer_id | String | Vectara customer ID |
vectara_corpus_id | String | Vectara corpus ID |
vectara_api_key | SecretString | Vectara API key |
files_url | List[String] | Optional URLs for file initialization |
Name | Type | Description |
---|
search_results | List[Data] | Results of similarity search |
This component facilitates a Weaviate Vector Store setup, optimizing text and document indexing and retrieval.
For more information, see the Weaviate Documentation.
Name | Type | Description |
---|
weaviate_url | String | Default instance URL |
search_by_text | Boolean | Indicates whether to search by text |
api_key | SecretString | Optional API key for authentication |
index_name | String | Optional index name |
text_key | String | Default text extraction key |
input | Document | Document or record |
embedding | Embeddings | Model used |
attributes | List[String] | Optional additional attributes |
Name | Type | Description |
---|
vector_store | WeaviateVectorStore | Weaviate vector store instance |
Note: Ensure Weaviate instance is running and accessible. Verify API key, index name, text key, and attributes are set correctly.
This component searches a Weaviate Vector Store for documents similar to the input.
For more information, see the Weaviate Documentation.
Name | Type | Description |
---|
search_type | String | Type of search, such as "Similarity" or "MMR" |
input_value | String | Search query |
weaviate_url | String | Default instance URL |
search_by_text | Boolean | Indicates whether to search by text |
api_key | SecretString | Optional API key for authentication |
index_name | String | Optional index name |
text_key | String | Default text extraction key |
embedding | Embeddings | Model used |
attributes | List[String] | Optional additional attributes |
Name | Type | Description |
---|
search_results | List[Data] | Results of similarity search |