Skip to main content

Amazon

Bundles contain custom components that support specific third-party integrations with Langflow.

This page describes the components that are available in the Amazon bundle.

Amazon Bedrock

This component generates text using Amazon Bedrock LLMs.

It can output either a Model Response (Message) or a Language Model (LanguageModel). Specifically, the Language Model output is an instance of ChatBedrock configured according to the component's parameters.

Use the Language Model output when you want to use an Amazon Bedrock model as the LLM for another LLM-driven component, such as an Agent or Smart Function component.

For more information, see Language Model components.

Amazon Bedrock parameters

Some parameters are hidden by default in the visual editor. You can modify all parameters through the Controls in the component's header menu.

NameTypeDescription
inputStringInput parameter. The input string for text generation.
system_messageStringInput parameter. A system message to pass to the model.
streamBooleanInput parameter. Whether to stream the response. Only works in chat. Default: false.
model_idStringInput parameter. The Amazon Bedrock model to use.
aws_access_key_idSecretStringInput parameter. AWS Access Key for authentication.
aws_secret_access_keySecretStringInput parameter. AWS Secret Key for authentication.
aws_session_tokenSecretStringInput parameter. The session key for your AWS account.
credentials_profile_nameStringInput parameter. Name of the AWS credentials profile to use.
region_nameStringInput parameter. AWS region where your Bedrock resources are located. Default: us-east-1.
model_kwargsDictionaryInput parameter. Additional keyword arguments to pass to the model.
endpoint_urlStringInput parameter. Custom endpoint URL for a Bedrock service.

Amazon Bedrock Embeddings

The Amazon Bedrock Embeddings component is used to load embedding models from Amazon Bedrock.

For more information about using embedding model components in flows, see Embedding Model components.

Amazon Bedrock Embeddings parameters

Some parameters are hidden by default in the visual editor. You can modify all parameters through the Controls in the component's header menu.

NameTypeDescription
model_idStringInput parameter. The ID of the model to call, such as amazon.titan-embed-text-v1. This is equivalent to the modelId property in the list-foundation-models API.
aws_access_key_idSecretStringInput parameter. AWS Access Key for authentication.
aws_secret_access_keySecretStringInput parameter. AWS Secret Key for authentication.
aws_session_tokenSecretStringInput parameter. The session key for your AWS account.
credentials_profile_nameStringInput parameter. The name of the AWS credentials profile in ~/.aws/credentials or ~/.aws/config, which has access keys or role information.
region_nameStringInput parameter. The AWS region to use, such as us-west-2. Falls back to the AWS_DEFAULT_REGION environment variable or region specified in ~/.aws/config if not provided.
endpoint_urlStringInput parameter. The URL to set a specific service endpoint other than the default AWS endpoint.
Search